9.1-9.2

Exploring Symmetry, Translations, & Vectors

Line Symmetry

When parts of a figure are ______of each other around a line.

A figure can have more than one line of symmetry.

How about these?

Rotational Symmetry

A figure is said to have rotational (or point) symmetry when you are able to ____ an object to see if it will eventually look the same before it can be turned .

How to figure out the angle of rotation

Do these have rotational symmetry?

What are Transformations?

Translation

Translations on a Coordinate Plane Using a Rule

Rule:

$$(x,y) \rightarrow (x+6, y-5)$$

Afterwards...

$$(x,y)\rightarrow(x-8, y-2)$$

Vectors

A quantity that has direction and magnitude

Name:

Magnitude:

Component Form:

Name the following vectors and indicate their component form.

Translations on a Coordinate Plane Using a Vector

Translate using the components of the vector:

$$\langle 5, -6 \rangle$$